An hydrodynamic shear instability in stratified disks

نویسنده

  • B. Dubrulle
چکیده

We discuss the possibility that astrophysical accretion disks are dynamically unstable to nonaxisymmetric disturbances with characteristic scales much smaller than the vertical scale height. The instability is studied using three methods: one based on the energy integral, which allows the determination of a sufficient condition of stability, one using a WKB approach, which allows the determination of the necessary and sufficient condition for instability and a last one by numerical solution. This linear instability occurs in any inviscid stably stratified differential rotating fluid for rigid, stress-free or periodic boundary conditions, provided the angular velocity Ω decreases outwards with radius r. At not too small stratification, its growth rate is a fraction of Ω. The influence of viscous dissipation and thermal diffusivity on the instability is studied numerically, with emphasis on the case when d ln Ω/d ln r = −3/2 (Keplerian case). Strong stratification and large diffusivity are found to have a stabilizing effect. The corresponding critical stratification and Reynolds number for the onset of the instability in a typical disk are derived. We propose that the spontaneous generation of these linear modes is the source of turbulence in disks, especially in weakly ionized disks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stratified disks are locally stable

Notwithstanding recent claims by Richard et al., there is no linear hydrodynamic instability of axisymmetrically stable disks in the local limit. We prove this by means of an exact stability analysis of an unbounded incompressible flow having constant stratification and constant shear.

متن کامل

Three-Dimensional Vortices in Stratified Protoplanetary Disks

We present the results of high-resolution, three-dimensional (3D) hydrodynamic simulations of the dynamics and formation of coherent, long-lived vortices in stably-stratified protoplanetary disks. Tall, columnar vortices that extend vertically through many scale heights in the disk are unstable to small perturbations; such vortices cannot maintain vertical alignment over more than a couple scal...

متن کامل

Local Hydrodynamic Stability of Accretion Disks

We employ a variety of numerical simulations in the local shearing box system to investigate in greater depth the local hydrodynamic stability of Keplerian differential rotation. In particular we explore the relationship of Keplerian shear to the nonlinear instabilities known to exist in simple Cartesian shear. The Coriolis force is the source of linear stabilization in differential rotation. W...

متن کامل

On hydrodynamic shear turbulence in Keplerian disks: via transient growth to bypass transition

This paper deals with the problem of hydrodynamic shear turbulence in non-magnetized Keplerian disks. Several papers have appeared recently on the subject, on possible linear instabilities which may be due to the presence of a stable stratification, or caused by deviations from cylindrical rotation. Here we wish to draw attention to another route to hydrodynamic turbulence, which seems to be li...

متن کامل

Nonlinear Stability of Thin, Radially-Stratified Disks

We perform local numerical experiments to investigate the nonlinear stability of thin, radially-stratified disks. We demonstrate the presence of radial convective instability when the disk is nearly in uniform rotation, and show that the net angular momentum transport is slightly inwards, consistent with previous investigations of vertical convection. We then show that a convectively-unstable e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004